S. 120 / 7 Seeufer

Vermutung des Campingplatz-Betreibers: Mindestens 75 % der Gäste wollen einen Sandstrand.

Kann diese Nullhypothese auf dem Siginifikanzniveau von 5 % abgelehnt werden, wenn bei einer Befragung von 200 zufällig ausgewählten Campern nur 109 einen Sandstrand bevorzugen? (Begründung!)

Nullhypothese: H_0 : $p \ge 0.75$ ("viele "Sandis'")

Test: n = 200

X: "Anzahl der Sandstrand-Befürworter"

1. Weg (einfacher):

Entscheidungsregel (annehmen):

Annahmebereich: A = {110; 111; ...; 200}

 $X \in A \rightarrow Annahme von H_0$ ("viele ,Sandis'")

Ablehnungsbereich: $\overline{A} = \{0; 1; ...; 109\}$

 $X \in \overline{A} \rightarrow Ablehnung von H_0$ ("wenige ,S."")

Fehler 1. Art:

H₀ trifft zu, wird aber fälschlich abgelehnt: Es sind mind. 75 % Sandstrand-Befürworter, aufgrund des Testergebnisses geht man aber von weniger als 75 % Befürwortern aus.

Ist die Wahrscheinlichkeit für den Fehler 1. Art bei obiger Entscheidungsregel kleiner als das Signifikanzniveau von 5 %?

$$P_{0,75}^{200}(X \in \overline{A}) = P_{0,75}^{200}(X \le 109) \stackrel{TW}{=} 0$$
 (nicht tabelliert)

Bei obiger Entscheidungsregel, H_0 bei bis zu 109 Sandstrand-Befürwortern zu verwerfen, ist die Wahrscheinlichkeit für den Fehler 1. Art nahezu 0. Bei einem Testergebnis von nur 109 Befürwortern kann H_0 somit auf einem Signifikanzniveau von 5 % abgelehnt werden.

2. Weg (etwas schwieriger):

Gesucht:

Entscheidungsregel mit einem möglichst großen Ablehnungsbereich, so dass Ho mit einer Wahrscheinlichkeit von höchstens 5 % irrtümlich abgelehnt wird.

Entscheidungsregel (bestimmen):

Annahmebereich: $A = \{k + 1; k + 2; ...; 200\}$

 $X \in A \rightarrow Annahme von H_0$ ("viele 'Sandis'")

Ablehnungsbereich: $\overline{A} = \{0; 1; ...; k\}$

 $X \in \overline{A} \rightarrow Ablehnung von H_0 ("wenige ,S.")$

Fehler 1. Art: ... (siehe oben)

Die Wahrscheinlichkeit für den Fehler 1. Art soll höchstens 5 % (Signifikanzniveau) groß sein.

Also:

$$P_{0,75}^{200}(X \in \overline{A}) \stackrel{!}{\leq} 0.05 \quad (= 5 \%)$$

$$P_{0,75}^{200}(X \le k) \le 0.05$$

Tafelwerk (p = 0.75; n = 200):

Gesucht ist der größtmögliche Wert k, für den die Summenwahrscheinlichkeit höchstens 5 % ist:

$$P_{0.75}^{200}(X \le 139) = 0.04539$$

$$P_{0,75}^{200}(X \le 140) = 0.06247$$
 ("zu viel")

Also: k = 139

Entscheidungsregel:

Bei bis zu 139 Sandstrand-Befürwortern (u. somit auch bei 109) kann H_0 auf dem Signifikanzniveau von 5 % verworfen werden.

S. 120 / 9 Bauteile

X: Obergrenze der Abweichung vom Sollwert (in mm)

х	0	1	2	3	4
P(X = x)	0,50	0,19	0,16	0,12	0,03

a) Bauteile mit Abweichungen von mehr als σ vom Erwartungswert μ = E(X) gelten als Ausschuss.

Zu zeigen: Die Ausschussquote ist 15 %.

Erwartungswert:

$$\mu$$
 = E(X) = 0 · 0,50 + 1 · 0,19 + ... + 4 · 0,03 = 0,99 Varianz:

Var(X) =
$$(0 - 0.99)^2 \cdot 0.50 + (1 - 0.99)^2 \cdot 0.19 + ...$$

+ $(4 - 0.99)^2 \cdot 0.03 = 1.4099 \approx 1.41$

Standardabweichung:

$$\sigma = \sqrt{Var(X)} = \sqrt{1,4099} = 1,1873... \approx 1,19$$

Abweichung von mehr als σ vom Erwartungswert:

also:
$$x > \mu + \sigma = 0.99 + 1.19 = 2.18$$

erfüllt für $x = 3$ und für $x = 4$

$$P(x > \mu + \sigma) = P(X = 3) + P(X = 4) = 0.12 + 0.03 = 0.15 = 15\%$$

Also: Die Ausschussquote ist 15 %.

b) Konkurrenz-Firma behauptet,

ihre Ausschussquote p ist höchstens 10 %.

Nullhypothese: H_0 : $p \le 0,10$ ("wenig Aussch.")

Test: n = 200

Y: "Anzahl der Ausschuss-Teile"

Entscheidungsregel für Signifikanzniveau 5 %:

Annahmebereich: $A = \{0; 1; ...; k\}$

 $Y \in A \rightarrow Annahme von H_0$ ("wenig Aussch.")

Ablehnungsbereich: $\overline{A} = \{k + 1; k + 2; ...; 200\}$

 $Y \in \overline{A} \rightarrow Ablehnung von H_0$ ("viel Aussch.")

Fehler 1. Art:

H₀ trifft zu, wird aber fälschlich abgelehnt:

Es ist höchstens 10 % Ausschuss, aufgrund des Testergebnisses geht man aber von mehr als 10 % Ausschuss aus.

Die Wahrscheinlichkeit für den Fehler 1. Art soll höchstens 5 % (Signifikanzniveau) groß sein.

Also:
$$\begin{aligned} P_{0,1}^{200}(Y \in \overline{A}) &\stackrel{!}{\leq} 0,05 \quad (=5 \%) \\ P_{0,1}^{200}(Y \geq k+1) &\leq 0,05 \\ 1 - P_{0,1}^{200}(Y \leq k) &\leq 0,05 \\ P_{0,1}^{200}(Y \leq k) &\geq 0,95 \end{aligned}$$

Tafelwerk (p = 0,1; n = 200):

Gesucht ist der kleinstmögliche Wert k, für den die Summenwahrscheinlichkeit mindestens 95 % ist:

$$P_{0,1}^{200}(Y \le 27) = 0.95657$$

 $P_{0,1}^{200}(Y \le 26) = 0.93278$ ("zu wenig")

Also: k = 27

Bei 28 und mehr defekten Ausschuss-Teilen kann H₀ auf dem Signifikanzniveau abgelehnt werden.

- Testergebnis: 27 Ausschuss-Teile Interpretation: Man kann der Behauptung der Konkurrenz-Firma (gerade noch) glauben schenken.
- d) In Wirklichkeit: p=0.15 (wie bei erster Firma) Fehler 2. Art: $P_{0,15}^{200}(Y \le 27) = 0.31659 \approx 31.7 \%$